Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 47Q

(a)

To determine

The angular distance in arcseconds between the star 2M1207 and its planet, seen from Earth, considering this star is 170 light years from Earth.

(a)

Expert Solution
Check Mark

Answer to Problem 47Q

Solution:

1.1 arcsec.

Explanation of Solution

Given data:

The star 2M1207 is 170 light years from Earth.

Formula used:

Write the expression for the small angle formula.

α=D(206265)d

Here, α is the small angle, D is the orbital distance, and d is the distance from the observer.

Explanation:

Recall the expression for the small angle formula.

α=D(206265 arcseconds)d

Substitute 55 au for D, 170 ly for d.

α=(55 au)(206265 arcsec)(170 ly)(63,240 au1 ly)=1.1 arcsec

Conclusion:

Hence, the angular distance in arcseconds between the star 2M1207 and its planet is 1.1 arcsec.

(b)

To determine

The orbital period of the orbiting star 2M1207, whose mass is 0.025 times that of the Sun, by considering that the distance between the star and its planet is the semi-major axis of the orbit.

(b)

Expert Solution
Check Mark

Answer to Problem 47Q

Solution:

2580 yrs.

Explanation of Solution

Given data:

The mass of star 2M1207 is 0.025 times that of the Sun.

Formula used:

Write the formula for the relation between orbital period and orbital distance according to Kepler’s third law.

P2=(4π2GM)a3

Here, P is the period, G is the gravitational constant, M is the mass of planet or star, and a is the orbital distance.

Explanation:

The formula for the relation between orbital period and orbital distance for Sun, according to Kepler’s third law is written as,

PSun2=(4π2GMSun)aSun3 …… (1)

Here, subscript ‘Sun’ is used for the respective quantities of the Sun.

The formula for the relation between orbital period and orbital distance for star 2M1207, according to Kepler’s third law is written as,

P2M12072=(4π2GM2M1207)a2M12073 …… (2)

Here, subscript ‘2M1207’ is used for the respective quantities of the star 2M1207.

Divide equation (2) by equation (1).

P2M12072PSun2=(4π2GM2M1207)a2M12073(4π2GMSun)aSun3P2M12072=(MSun)(a2M12073)(M2M1207)(aSun3)(PSun2)

Substitute 1 yr for PSun, 0.025MSun for M2M1207, 1 au for aSun and 55 au for a2M1207.

P2M1207=(MSun)(55 au)3(0.025MSun)(1 au)3(1 yr)2=2580 yrs

Conclusion:

Hence, the orbital period for star 2M1207 is 2580 yrs.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What would be the angular diameter (in arc seconds) of a planet with diameter 8.5 x 105 km and orbital distance from it's star of 175 x 108 km as seen from a planet with. orbital distance from the same star of 70 x 107 km as seen from their closest approach?
Consider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06
Please answer the following  A) Suppose an object takes 1000 years to orbit the Sun. How many times farther from the Sun is it, when compared with Earth?  B)  Communications with the spacecraft Alpha using radio waves require 2000 years for the round trip (there and back). This implies that Alpha is how many light years away from Earth?
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Astronomy
    Physics
    ISBN:9781938168284
    Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
    Publisher:OpenStax
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY