Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 24P
To determine

The depth of the bullet’s penetration into the block.

Expert Solution & Answer
Check Mark

Answer to Problem 24P

The depth of the bullet’s penetration into the block is 7.94cm.

Explanation of Solution

Assume equal firing speeds and equal forces required for the two bullets to push wood fibers apart. This equal forces act backward on two bullets.

Write the expression for law of conservation of energy for first bullet.

  Ki+ΔEmech=Kf        (I)

Here, Ki is the initial kinetic energy of the first bullet, ΔEmech is the mechanical energy of the system, and Kf is the final kinetic energy of the first bullet.

Write the expression for initial kinetic energy of the first bullet.

  Ki=12m1v2        (II)

Here, m1 is the mass of the first bullet and v is the velocity of the first bullet.

Write the expression for mechanical energy of the system.

  ΔEmech=Fd1        (III)

Here, F is the force exerted by the bullet and d1 is the depth of the block penetrates by first bullet.

Write the expression for law of conservation of momentum for second bullet.

  pi=pf

Here, pi is the initial momentum and pf is the final momentum.

Rewrite the above expression for mass and velocity.

  m2v=(mblock+m1+m2)vf        (IV)

Here, m2 is the mass of the second bullet, v is the aped of the second bullet, mblock is the mass of the block, and vf is the final velocity of bullet fired from gun into the block.

Write the expression for law of conservation of energy for second bullet.

  Ki+ΔEmech=Kf        (V)

Here, Ki is the initial kinetic energy of the second bullet, ΔEmech is the mechanical energy of the system, and Kf is the final kinetic energy of the second bullet.

Write the expression for initial kinetic energy of the second bullet.

  Ki=12m2v2        (VI)

Here, m2 is the mass of the second bullet.

Write the expression for mechanical energy of the system.

  ΔEmech=Fd2        (VII)

Here, d2 is the depth of the block penetrates by second bullet.

Write the expression for final kinetic energy of the second bullet.

  Kf=12(mblock+m1+m2)vf2        (VIII)

Here, vf is the final speed.

Conclusion:

Substitute the equations (II) and (III) in equation (I).

  12m1v2Fd1=0

Substitute 7.00g for m1 and 8.00cm for d1 in above relation.

  12(7.00g)(103kg1g)v2F(8.00cm)(102m1cm)=012(7.00×103kg)v2F(8.00×102m)=0        (IX)

Rewrite the above expression for v2.

  v2=F(8.00×102m)12(7.00×103kg)        (X)

Substitute 7.00g for m2, 7.00g for m1 and 1.00kg for mblock in equation (IV) to find vf.

  vf=(7.00g)(103kg1g)v(1.00kg+7.00g×(0.001kg1g)+7.00g×(0.001kg1g))=(7.00×103kg)v(1.014kg)        (XI)

Substitute the equations (VI), (VII) and (VIII) in equation (V).

  12m2v2+Fd2=12(mblock+m1+m2)vf2

Substitute 7.00g for m2, 7.00g for m1 and 1.00kg for mblock in above relation.

  12(7.00g)(103kg1g)v2Fd2=12(1.00kg+7.00g×(0.001kg1g)+7.00g×(0.001kg1g))vf212(7.00×103kg)v2Fd2=12(1.014kg)vf2

Substitute equation (XI) in above relation.

  12(7.00×103kg)v2Fd2=12(1.014kg)((7.00×103kg)v(1.014kg))2Fd2=12(7.00×103kg)v212(7.00×103kg)2(1.014kg)v2

Substitute equation (X) in above relation.

  Fd2=12[(7.00×103kg)(7.00×103kg)2(1.014kg)]F(8.00×102m)12(7.00×103kg)Fd2=F(8.00×102m)(1(7.00×103kg)(1.014kg))d2=7.94cm

Therefore, the depth of the bullet’s penetration into the block is 7.94cm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A(n) 5.7-g bullet is fired from a gun into a 1.00-kg block of wood held in a vise. The bullet penetrates the block to a depth of 8.9 cm. An identical block of wood (with no bullet inside) is next placed on a frictionless horizontal surface, and a second identical bullet is fired from the same gun into the block. How much smaller is the penetration depth in the second case? (Hint: The depth in the second case should be smaller because some of its original kinetic energy is retained in the bullet-block system.)Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ________ mm smaller What is the muzzle velocity of the bullet if it produces 910 J of heat in the second case? ________ m/s
A 3 m diameter by 4.5 m high tank kept of density vertically is receiving water 3 1000 kg/m at the rate of 2000 kg/min and is discharging through a 15 cm diameter line with a constant velocity of 1.5 m/s. At a given instant, the tank is half full. Find the water level and mass change in the tank 15 minutes later.
An 20.g bullet is fired from a rifle having a barrel 0.50 m long. Choosing the origin to be at the location where the bullet begins to move, then the force (in newtons) exerted by the expanding gas on the bullet is given by: F(x) = 1.7.10^3N + (1.0.10^2 N/m) x - (2.610^3 N/m^2)x^2 where x is in meters. Find the speed of the bullet as it leaves the barrel.

Chapter 8 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 8 - A 5-kg cart moving to the right with a speed of 6...Ch. 8 - A 2-kg object moving to the right with a speed of...Ch. 8 - The momentum of an object is increased by a factor...Ch. 8 - The kinetic energy of an object is increased by a...Ch. 8 - Prob. 9OQCh. 8 - Prob. 10OQCh. 8 - Prob. 11OQCh. 8 - Prob. 12OQCh. 8 - Prob. 13OQCh. 8 - A ball is suspended by a string that is tied to a...Ch. 8 - A massive tractor is rolling down a country road....Ch. 8 - Prob. 16OQCh. 8 - Prob. 17OQCh. 8 - Prob. 18OQCh. 8 - Prob. 1CQCh. 8 - Prob. 2CQCh. 8 - A bomb, initially at rest, explodes into several...Ch. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - A juggler juggles three balls in a continuous...Ch. 8 - Prob. 7CQCh. 8 - Prob. 8CQCh. 8 - Prob. 9CQCh. 8 - Prob. 10CQCh. 8 - Prob. 11CQCh. 8 - Prob. 12CQCh. 8 - An open box slides across a frictionless, icy...Ch. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - A girl of mass mg is standing on a plank of mass...Ch. 8 - Two blocks of masses m and 3m are placed on a...Ch. 8 - Prob. 8PCh. 8 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 8 - A tennis player receives a shot with the ball...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - In a slow-pitch softball game, a 0.200-kg softball...Ch. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Two blocks are free to slide along the...Ch. 8 - As shown in Figure P8.20, a bullet of mass m and...Ch. 8 - Prob. 21PCh. 8 - A tennis ball of mass mt is held just above a...Ch. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - An object of mass 3.00 kg, moving with an initial...Ch. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - A billiard ball moving at 5.00 m/s strikes a...Ch. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - A water molecule consists of an oxygen atom with...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - A 2.00-kg particle has a velocity (2.00i3.00j)m/s,...Ch. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - A rocket has total mass Mi = 360 kg, including...Ch. 8 - A model rocket engine has an average thrust of...Ch. 8 - Two gliders are set in motion on a horizontal air...Ch. 8 - Prob. 49PCh. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - A small block of mass m1 = 0.500 kg is released...Ch. 8 - Prob. 56PCh. 8 - A 5.00-g bullet moving with an initial speed of v...Ch. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - A cannon is rigidly attached to a carriage, which...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - George of the Jungle, with mass m, swings on a...Ch. 8 - Sand from a stationary hopper falls onto a moving...Ch. 8 - Prob. 65P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Elastic and Inelastic Collisions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=M2xnGcaaAi4;License: Standard YouTube License, CC-BY