Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.3P

Consider an infinitely thin flat plate of chord c at an angle of attack α in a supersonic flow. The pressures on the upper and lower surfaces are different but constant over each surface; that is, p u ( s ) = c 1 and p l ( s ) = c 2 , where c 1 and c 2 are constants and c 2 > c 1 . Ignoring the shear stress, calculate the location of the center of pressure.

Blurred answer
Students have asked these similar questions
Consider a cone at zero angle of attack in a hypersonic flow. (Hypersonic flow is very high-speed flow, generally defined as any flow above a Mach number of 5.) The half-angle of the cone is θc, as shown inthe figure. An approximate expression for the pressure coefficient on the surface of ahypersonic body is given by the newtonian sine-squared law :                                          Cp = 2 sin2 θcNote that Cp, hence, p, is constant along the inclined surface of the cone. Along the base of the body, we assume that p = p∞. Neglecting the effect of friction, obtain an expression for the drag coefficient of the cone, where CD is based on the area of the base Sb.
The tank is filled with air at 20°C and 139 kPa in stationary condition. Air is leaving the tank with flowing in a nozzle under steady-state condition. The flow is under isentropic and subsonic condition. The nozzle exit area is 18,59 cm?. After leaving from the nozzle, air strikes a vertical plate. Define the force [N] required to hold the plate stationary. (Note: Assume Pe=1 atm, kair=1.4, Rair=287 J/kg.K) Pte F Yanıt:
One type of supersonic wind tunnel is a blow-down tunnel, where air is stored in a high-pressure reservoir, and then, upon the opening of a valve, exhausted through the tunnel into a vacuum tank or simply into the open atmosphere at the downstream end of the tunnel. For this example, weconsider just the high-pressure reservoir as a storage tank that is being charged with air by a high-pressure pump. As air is being pumped into the constant-volume reservoir, the air pressure inside the reservoir increases. The pump continues to charge the reservoir until the desired pressure is achieved.Consider a reservoir with an internal volume of 30 m3. As air is pumped into the reservoir, the air pressure inside the reservoir continually increases with time. Consider the instant during the charging process when the reservoir pressure is 10 atm. Assume the air temperature inside the reservoir is held constant at 300 K by means of a heat exchanger.Air is pumped into the reservoir at the rate of 1…
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License