Introduction to Electrodynamics
Introduction to Electrodynamics
4th Edition
ISBN: 9781108420419
Author: David J. Griffiths
Publisher: Cambridge University Press
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2.5, Problem 2.38P

A metal sphere of radius R, carrying charge q, is surrounded by athick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The shell carries no net charge.
(a) Find the surface charge density σ at R, at a, and at b.
(b) Find the potential at the center, using infinity as the reference point.
(c) Now the outer surface is touched to a grounding wire, which drains off chargeand lowers its potential to zero (same as at infinity). How do your answers to(a) and (b) change?

Blurred answer
08:07
Students have asked these similar questions
4.20 Fig. 4.11 shows three separate charge distributions in the z = 0 plane in free space. (a) Find the total charge for each distribution. (b) Find the potential at P(0, 0, 6) caused by each of the three charge distributions acting alone. (c) Find Vp. (0, 5, 0) P-I nC/m 20° z-0 plane (0, 3, 0) p-3 Pu=1.5 nC/m 10° p-1.6 10° p-3.5 PacI nCim? 20 FIGURE 4.1I
Problem 2.20 One of these is an impossible electrostatic field. Which one? (a) Ek[xy x + 2yzý + 3xz2]; (b) E= k[y² + (2xy + z²) ŷ + 2yz 2]. Here k is a constant with the appropriate units. For the possible one, find the potential, using the origin as your reference point. Check your answer by computing VV. [Hint: You must select a specific path to integrate along. It doesn't matter what path you choose, since the answer is path-independent, but you simply cannot integrate unless you have a particular path in mind.] Problem 2.11 Use Gauss's law to find the electric field inside and outside a spherical shell of radius R, which carries a uniform surface charge density o. Compare your answer to Prob. 2.7. Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere whose radius is R and whose total charge is q. Use infinity as your reference point. Compute the gradient of V in each region, and check that it yields the correct field. Sketch V (r).
4.20 Fig. 4.11 shows three separate charge distributions in the z = 0 plane in free space. (a) Find the total charge for each distribution. (b) Find the potential at P(0, 0, 6) caused by each of the three charge distributions acting alone. (c) Find Vp. (0, 5, 0) PLA=A nC/m 20° z=0 plane (0, 3, 0) p=3 PLB=1.5 nC/m 10° 10° p= 1.6 p=3.5 Psc=1 nC/m² 20° FIGURE 4.11 See Prob. 20.

Chapter 2 Solutions

Introduction to Electrodynamics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
28.1 Rigid Bodies; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=u_LAfG5uIpY;License: Standard YouTube License, CC-BY