While the Sun contains nearly all the mass of the Solar System, how much of the total angular momentum of the Solar System is due to the Sun’s rotation on its axis? Find the fractions of the Solar System’s total angular momentum and total mass accounted for by the rotation of the Sun. Use a simplified model that assumes the Sun is a sphere of uniform density that rotates about its axis once every 27 days. This model also makes the following simplifying assumptions: i) only the four outer gas giants—Jupiter, Saturn, Uranus, and Neptune—together with the Sun are important in determining the total angular momentum and the total mass of the Solar System, ii) these four outer planets orbit the Sun in circular orbits, and iii) that the rotation of these planets on their own axes can be neglected. Consult Google for values on the masses, mean distances, orbital periods, etc. of the planets and the Sun that you’ll need to work this problem.

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter13: Rotation Ii: A Conservation Approach
Section: Chapter Questions
Problem 55PQ
icon
Related questions
icon
Concept explainers
Topic Video
Question

While the Sun contains nearly all the mass of the Solar System, how much of the total angular momentum of the Solar System is due to the Sun’s rotation on its axis? Find the fractions of the Solar System’s total angular momentum and total mass accounted for by the rotation of the Sun. Use a simplified model that assumes the Sun is a sphere of uniform density that rotates about its axis once every 27 days. This model also makes the following simplifying assumptions: i) only the four outer gas giants—Jupiter, Saturn, Uranus, and Neptune—together with the Sun are important in determining the total angular momentum and the total mass of the Solar System, ii) these four outer planets orbit the Sun in circular orbits, and iii) that the rotation of these planets on their own axes can be neglected. Consult Google for values on the masses, mean distances, orbital periods, etc. of the planets and the Sun that you’ll need to work this problem.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 8 images

Blurred answer
Knowledge Booster
Fluid Pressure
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning