The PASCO human arm model is configured such that the cord representing the bicep is perfectly vertical and the forearm is at 90° (in the figure to the right, the cord is not quite vertical). A mass of 100 g is attached to the hand. Draw a free-body diagram on the figure to the right showing all forces which act on the forearm. • The force of the bicep F on the arm • The force of the humerus Fy on the arm • The weight of the forearm WA • The mass in the hand Wm Be careful to draw the force vectors with tails beginning at the point where the force is actually applied to the forearm. 100

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter4: Coplanar Equilibrium Analysis
Section: Chapter Questions
Problem 4.41P: The center of gravity of the 3000-lb car is at G. The car is parked on an incline with the parking...
icon
Related questions
Question
1. The PASCO human arm model is configured such that
the cord representing the bicep is perfectly vertical and
the forearm is at 90° (in the figure to the right, the cord
is not quite vertical). A mass of 100 g is attached to the
hand. Draw a free-body diagram on the figure to the
right showing all forces which act on the forearm.
The force of the bicep F on the arm
The force of the humerus FH on the arm
The weight of the forearm W
The mass in the hand Wm
100 g
Be careful to draw the force vectors with tails beginning at the point where the force is actually
applied to the forearm.
2. Consider the free body diagram below. Determine the perpendicular component F̟ of the
force F exerted by the biceps brachii on the forearm. Use the fact that cos 0 = H/B to write
this component directly in terms of the humerus length H and the biceps length B.
H
3. If the forearm is in equilibrium, then there is no angular acceleration and therefore the sum of
the torques applied to the forearm must be zero. Using your answer above, write an equation
showing the relationship between the magnitudes of the applied forces F, WA, and Wm.
Assume that the center of mass of the arm is half of the arm length l. Choose your origin to be
where the force of the humerus is applied, so that we don't need to know that force.
4. What do
think are some disadvantages of your muscle having such a short lever arm?
5. What are some advantages of your muscle having such a short lever arm?
Transcribed Image Text:1. The PASCO human arm model is configured such that the cord representing the bicep is perfectly vertical and the forearm is at 90° (in the figure to the right, the cord is not quite vertical). A mass of 100 g is attached to the hand. Draw a free-body diagram on the figure to the right showing all forces which act on the forearm. The force of the bicep F on the arm The force of the humerus FH on the arm The weight of the forearm W The mass in the hand Wm 100 g Be careful to draw the force vectors with tails beginning at the point where the force is actually applied to the forearm. 2. Consider the free body diagram below. Determine the perpendicular component F̟ of the force F exerted by the biceps brachii on the forearm. Use the fact that cos 0 = H/B to write this component directly in terms of the humerus length H and the biceps length B. H 3. If the forearm is in equilibrium, then there is no angular acceleration and therefore the sum of the torques applied to the forearm must be zero. Using your answer above, write an equation showing the relationship between the magnitudes of the applied forces F, WA, and Wm. Assume that the center of mass of the arm is half of the arm length l. Choose your origin to be where the force of the humerus is applied, so that we don't need to know that force. 4. What do think are some disadvantages of your muscle having such a short lever arm? 5. What are some advantages of your muscle having such a short lever arm?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Axial Load
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L