(Inspired by a walk in Baker Student Center.) An escalator handles a steady load of 30 people per minute taking them from the first to the second floor through a vertical rise of 24 feet. Let us say the average person riding the elevator weighs 160 lb. a. What output power on a motor do you require to drive the unit? Take literally one minute to find an electric motor online that could do this job. You can search “_ hp electric motor" and state the motor name, power, cost, and vendor. Of course, round up your hp, not down to meet your specs. (In practice, this is an area where you can spec the motor in equivalent Watts, if you choose.) b. What is the electric power that is input to the motor considering losses within the escalator system due to friction, vibration, etc.? Your chosen motors surely have a different efficiencies and sources may even present efficiency as a function of power/rpm, so let's all use the value of e=0.85 for consistency.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
2. (Inspired by a walk in Baker Student Center.) An escalator handles a steady load of 30 people per
minute taking them from the first to the second floor through a vertical rise of 24 feet. Let us say the
average person riding the elevator weighs 160 lb.
a. What output power on a motor do you require to drive the unit? Take literally one minute to
find an electric motor online that could do this job. You can search “_ hp electric motor"
and state the motor name, power, cost, and vendor. Of course, round up your hp, not down to
meet your specs. (In practice, this is an area where you can spec the motor in equivalent
Watts, if you choose.)
b. What is the electric power that is input to the motor considering losses within the escalator
system due to friction, vibration, etc.? Your chosen motors surely have a different efficiencies
and sources may even present efficiency as a function of power/rpm, so let's all use the value
of e= 0.85 for consistency.
Transcribed Image Text:2. (Inspired by a walk in Baker Student Center.) An escalator handles a steady load of 30 people per minute taking them from the first to the second floor through a vertical rise of 24 feet. Let us say the average person riding the elevator weighs 160 lb. a. What output power on a motor do you require to drive the unit? Take literally one minute to find an electric motor online that could do this job. You can search “_ hp electric motor" and state the motor name, power, cost, and vendor. Of course, round up your hp, not down to meet your specs. (In practice, this is an area where you can spec the motor in equivalent Watts, if you choose.) b. What is the electric power that is input to the motor considering losses within the escalator system due to friction, vibration, etc.? Your chosen motors surely have a different efficiencies and sources may even present efficiency as a function of power/rpm, so let's all use the value of e= 0.85 for consistency.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY