In this problem you will model the mixing energy of a mixture in a relatively simple way, in order to relate the existence of a solubility gap to molecular behavior. Consider a mixture of A and B molecules that is ideal in every way but one: The potential energy due to the interaction of neighboring molecules depends upon whether the molecules are like or unlike. Let n be the average number of nearest neighbors of any given molecule (perhaps 6 or 8 or 10). Let Uo be the average potential energy associated with the interaction between neighboring molecules that are the same (A-A or B-B), and let UAB be the potential energy associated with the interaction of a neighboring unlike pair (A-B). There are no interactions beyond the range of the nearest neighbors; the values of Uo and UAB are independent of the amounts of A and B; and the entropy of mixing is the same as for an ideal solution. Find an expression for the maximum temperature at which this system has a solubility gap.

Chemistry: An Atoms First Approach
2nd Edition
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Steven S. Zumdahl, Susan A. Zumdahl
Chapter16: Spontaneity, Entropy, And Free Energy
Section: Chapter Questions
Problem 114CP: Carbon tetrachloride (CCl4) and benzene (C6H6) form ideal solutions. Consider an equimolar solution...
icon
Related questions
Question

In this problem you will model the mixing energy of a mixture in a relatively simple way, in order to relate the existence of a solubility gap to molecular behavior. Consider a mixture of A and B molecules that is ideal in every way but one: The potential energy due to the interaction of neighboring molecules depends upon whether the molecules are like or unlike. Let n be the average number of nearest neighbors of any given molecule (perhaps 6 or 8 or 10). Let Uo be the average potential energy associated with the interaction between neighboring molecules that are the same (A-A or B-B), and let UAB be the potential energy associated with the interaction of a neighboring unlike pair (A-B). There are no interactions beyond the range of the nearest neighbors; the values of Uo and UAB are independent of the amounts of A and B; and the entropy of mixing is the same as for an ideal solution.

Find an expression for the maximum temperature at which this system has a solubility gap.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Thermodynamic Description of Mixtures
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning