An aeroplane has a rectangular planform wing with a span of 12 m and a chord of 2 m. The aircraft is flying at cruising speed of 62 m/s at an altitude of 3,200 m. Assume that the skin-friction drag on the wing can be approximated by the drag on a flat plate of the same dimensions at 0° incidence. Calculate the skin-friction drag and the maximum boundary layer thickness assuming (i) a completely laminar flow, and (ii) a completely turbulent flow. Assume μ = 1.63.10-5 N s/m², p = 0.89 kg/m³. Then, calculate the skin-friction drag accounting for transition at Recr = 5.105. What would the drag benefit be if transition was delayed to a Reynolds number of 106? What reduction in a propeller engine power would this imply in the cruise condition, assuming a propeller efficiency of 0.88?

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.55P
icon
Related questions
Question
An aeroplane has a rectangular planform wing with a span of 12 m and a chord of
2 m. The aircraft is flying at cruising speed of 62 m/s at an altitude of 3,200 m.
Assume that the skin-friction drag on the wing can be approximated by the drag
on a flat plate of the same dimensions at 0° incidence. Calculate the skin-friction
drag and the maximum boundary layer thickness assuming (i) a completely laminar
flow, and (ii) a completely turbulent flow.
Assume μ = 1.63.10-5 N s/m², p = 0.89 kg/m³.
Then, calculate the skin-friction drag accounting for transition at Recr= 5.105.
What would the drag benefit be if transition was delayed to a Reynolds number of
106? What reduction in a propeller engine power would this imply in the cruise
condition, assuming a propeller efficiency of 0.88?
Transcribed Image Text:An aeroplane has a rectangular planform wing with a span of 12 m and a chord of 2 m. The aircraft is flying at cruising speed of 62 m/s at an altitude of 3,200 m. Assume that the skin-friction drag on the wing can be approximated by the drag on a flat plate of the same dimensions at 0° incidence. Calculate the skin-friction drag and the maximum boundary layer thickness assuming (i) a completely laminar flow, and (ii) a completely turbulent flow. Assume μ = 1.63.10-5 N s/m², p = 0.89 kg/m³. Then, calculate the skin-friction drag accounting for transition at Recr= 5.105. What would the drag benefit be if transition was delayed to a Reynolds number of 106? What reduction in a propeller engine power would this imply in the cruise condition, assuming a propeller efficiency of 0.88?
Expert Solution
steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Fick’s Law of Diffusion and Mass Transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning