A block weighing 2.50 kg begins its motion from a stationary position at point A, located at the highest point of a frictionless ramp. The ramp is inclined at an angle of 40° relative to the horizontal and has a length of 1.50 m. As the block slides down the ramp, it reaches a region between point B and point C, which is a rough horizontal surface with a kinetic friction coefficient of 0.30. After covering a distance of 1.00 m on the horizontal surface, the block encounters a lightweight spring with a spring constant of 900 N/m. Find the speed of the block at point B?

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter24: Electric Fields
Section: Chapter Questions
Problem 40PQ
icon
Related questions
icon
Concept explainers
Topic Video
Question

A block weighing 2.50 kg begins its motion from a stationary position at point A, located at the highest point of a frictionless ramp. The ramp is inclined at an angle of 40° relative to the horizontal and has a length of 1.50 m. As the block slides down the ramp, it reaches a region between point B and point C, which is a rough horizontal surface with a kinetic friction coefficient of 0.30. After covering a distance of 1.00 m on the horizontal surface, the block encounters a lightweight spring with a spring constant of 900 N/m.

Find the speed of the block at point B?

A
40.0⁰
1.50 m
B
1.00 m
C
900 N/m
wwwwwww
k
=
Transcribed Image Text:A 40.0⁰ 1.50 m B 1.00 m C 900 N/m wwwwwww k =
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax