(a) An ideal gas of mass 4.5 g and molar mass of 17 g.mole-1 occupies 12.7 L at 310 K. Answer the following questions based on the conditions presented. (i) Calculate the work done under a constant external pressure of 30 kPa until the volume of gas has increased by 3.3 L.  (ii) Calculate the work done in an isothermal and reversible expansion process resulting in a final volume of 16L. (iii)  If the gas has a molar heat capacity of 30.8 J.mol-1.K-1 and is subjected to a constant volume process until it reaches a

Chemistry: Principles and Practice
3rd Edition
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Chapter17: Chemcial Thermodynamics
Section: Chapter Questions
Problem 17.103QE: A 220-ft3 sample of gas at standard temperature and pressure is compressed into a cylinder, where it...
icon
Related questions
Question

(a) An ideal gas of mass 4.5 g and molar mass of 17 g.mole-1 occupies 12.7 L at 310 K. Answer the following questions based on the conditions presented.

(i) Calculate the work done under a constant external pressure of 30 kPa until the volume of gas has increased by 3.3 L. 

(ii) Calculate the work done in an isothermal and reversible expansion process resulting in a final volume of 16L.

(iii)  If the gas has a molar heat capacity of 30.8 J.mol-1.K-1 and is subjected to a constant volume process until it reaches a temperature of 350K, calculate the heat transfer in kJ.mol-1 of the gas.      

(b) Calculate the standard enthalpy of formation of N2O5 (g) from N2 (g) and O2 (g), in kJ. mol-1, from the following data:                                                                          

2NO(g) + O2(g) ® 2NO2(g)      DH = -114.1 kJ

 

4NO2(g) + O2(g) ® 2N2O5(g)   DH = -110.2 kJ

 

N2(g) + O2(g)  ® 2NO(g)           DH = +180.5 kJ

Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

in i) where did 0.0098atm come from?

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Structure and Dynamics of Macromolecules
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax